
Optimizing Autonomous Taxi
Size With Reinforcement

Learning

Darren Mulholland

Abstract

AI researchers have devoted considerable effort to determining optimal
strategies for deploying, dispatching, and rebalancing fleets of autonomous
taxis, a widely-anticipated early use case for autonomous vehicles with
profound implications for established cultural norms and urban design.

An important related question which has received relatively little atten-
tion thus far is the optimal passenger capacity for individual vehicles
within these autonomous taxi fleets. Current taxi size is in part the prod-
uct of historical technological constraints which are unlikely to apply to
the driverless, electrically-powered vehicles of the future, making radi-
cally new designs possible.

In this thesis I use q-learning, a form of reinforcement learning, to inves-
tigate this question of optimal autonomous vehicle size, training a sim-
ulated fleet of autonomous taxis using real-world taxi data from New
York City. Q-learning is a foundational algorithm in reinforcement learn-
ing and provides an established theoretical framework to begin applying
reinforcement learning techniques to this novel problem domain.

My q-learning model predicts that the optimal seating capacity for these
simulated autonomous taxis is seven passengers. I discuss the plausibil-
ity and real-world implications of this prediction and consider alternative
reinforcement learning strategies for optimizing autonomous taxi size. I
develop and apply a Monte Carlo sample learning model to my sim-
ulated taxi fleet which both confirms the predictions of my q-learning
model and at the same time raises interesting questions about its opti-
mality.

1

Acknowledgements

Thank you to all the people who gave their time free of charge to create
the open source software which made this project possible.

2

Contents

List of Figures 5

List of Tables 6

1 Introduction 7
1.1 Project Motivation . 7
1.2 Project Aims and Objectives 10
1.3 Report Structure . 10

2 Background and Related Work 11
2.1 Q-learning . 11

2.1.1 Background . 12
2.1.2 Algorithm . 12
2.1.3 Policy . 14

2.2 Related Work . 16
2.2.1 Definitions . 16
2.2.2 Literature Review . 17
2.2.3 Summary . 20

3 Design 21
3.1 New York Taxi Data . 21
3.2 Applying Q-learning . 23

3.2.1 Reward Metric . 25

3

3.2.2 Training Protocol . 28

4 Implementation 30
4.1 Building a Simulation Engine in Python 30

4.1.1 Assumptions and Parameters 31
4.1.2 Tick Time . 31
4.1.3 Dispatching . 32
4.1.4 Repositioning . 33
4.1.5 Ridesharing . 35
4.1.6 Groups and Splitting 36
4.1.7 Execution Speed . 37

4.2 Calibrating the Model . 39
4.3 Implementing Q-learning 41

5 Results & Evaluation 44
5.1 Preliminary Investigation 44

5.1.1 Setup . 45
5.1.2 Results . 45
5.1.3 Performance Metrics 47

5.2 Confirmation . 50
5.3 Rethinking Q-learning . 51
5.4 Monte Carlo Reinforcement Learning 53

6 Conclusion 57

Bibliography 59

Appendix A Code 63

Appendix B Sample Q-Tables 64

Appendix C Sample Monte Carlo State Table 67

4

List of Figures

2.1 Q-learning algorithm . 15

3.1 Number of taxi trips per day 22
3.2 Heatmap of pick-up and drop-off locations 24

4.1 Zone map of Manhattan . 34
4.2 Passenger group size . 36
4.3 Mean passenger wait time over one month 39
4.4 Timeout percentage over one month 41
4.5 Sample taxi paths . 42

5.1 Distribution of taxi sizes over 2,000 days of training 46
5.2 Final distribution of taxi sizes (2,000 runs) 47
5.3 Timeout percentages (trained distribution) 48
5.4 Mean passenger waiting time (trained distribution) 49
5.5 Mean passenger journey time (trained distribution) 49
5.6 Distribution of taxi sizes over 6,000 days of training 51
5.7 Final distribution of taxi sizes (6,000 runs) 52
5.8 Monte Carlo sample learning 54
5.9 Final distribution of preferred taxi sizes 55

5

List of Tables

B.1 Sample Q-Table . 65
B.2 Sample Q-Table from a ’trapped’ taxi 66

C.1 Sample Monte Carlo state table 68

6

Chapter 1

Introduction

In this chapter I describe the motivation behind my project, list its aims
and objectives, and outline the structure of the report.

1.1 Project Motivation

The widely-anticipated near-future arrival of driverless cars on our streets
has fueled a wealth of academic research on related topics in the field of
AI. Particular interest has been paid to the subject of autonomous taxis, a
technology which has the potential to revolutionize urban transportation
with profound long-term implications for established cultural norms and
urban design [1].

One question which has so far been largely ignored by AI researchers
is the optimal passenger-capacity for individual vehicles within these
autonomous taxi fleets. Current car size is, in part, the product of histori-
cal technological constraints (such as the requirement to accommodate a

7

driver and an internal combustion engine and its associated drive train)
which will not apply to the autonomous, electrically-powered vehicles of
the future. Radically new car designs will certainly be possible in the
near future; whether they will prove practical or desirable is an open
question.

One factor which bears heavily on this question is the potential impact of
ride-sharing on optimal vehicle size. Urban taxi services have tradition-
ally operated on an exclusive basis, carrying one passenger or passenger
group at a time, with most of their seating capacity going unused. (As
we shall see, more than 70% of taxi trips in our New York dataset consist
of passengers travelling alone.) The recent revolution in mobile commu-
nication technology combined with sophisticated automated dispatching
systems has made ride-sharing (where multiple passengers with compat-
ible itinaries share a single taxi simultaneously) a viable alternative [2].
This raises the prospect that in the near future fleets of autonomous taxis
could operate more like small, free-floating, hailable buses than tradi-
tional taxis, servicing a continuous stream of ride-sharing passengers as
they plot and replot efficient dropoff routes through their city’s streets
[3].

This potential for ride-sharing would seem to make larger vehicles sizes
more attractive — if the additional capacity can be efficiently filled it
could result not just in cheaper fares for commuters but simultaneously
in higher profits for the taxi operators, a potential win-win outcome for
all concerned [4]. But ride-sharing is not the only novel factor we need
to take into account. The most significant operating cost for traditional
taxis is the labour-cost of the ever-present driver. Driverless technology
removes this factor from the equation entirely, significantly reducing the
economies of scale represented by larger vehicle sizes, potentially mak-
ing smaller taxis a more attractive prospect. If it turns out that empty
or wasted capacity is the most significant factor in autonomous taxi prof-

8

itability then single-seat taxis, which by definition have no spare capacity
to waste, may in fact be the most efficient design.

Clearly, optimal taxi size is a complicated question with no obvious or
simple answer.

In this project I have investigated this question of optimal autonomous
taxi size using reinforcement learning, a branch of AI which focusses on
goal-seeking agents attempting to maximize their long-term rewards by
interacting with their environment and learning from the consequences
of their actions [5].

Q-learning, the reinforcement learning technique I apply to my simu-
lated taxi fleet, was originally developed as a model for understanding
animal intelligence [6] and has a rich history of being applied to the study
of predator-prey interactions [7][8]. A fleet of autonomous, independent
taxis can be viewed, on this model, as a population of predator-agents
roaming their city streets in search of passengers to ’prey’ on (or more
prosaically, as gentle herbivors harvesting a geographically dispersed re-
source).

As with biological predators, the question of optimal vehicle size involves
a fundamental trade-off between capability and efficiency, and there is
no straightforward a priori way to determine an optimal solution in ad-
vance of empirical experimentation. Ideally we would, and no doubt at
some point will, investigate this question by conducting real-world ex-
periments with physical vehicles; in the meantime the best answers we
can hope for will come from simulations and here the novel approach
of applying reinforcement learning can help us at least provisionally an-
swer an important question with practical implications for real-world
fleet deployments.

9

1.2 Project Aims and Objectives

• To build a simulation engine capable of simulating a realistic fleet
of autonomous taxis.

• To assemble a dataset of real-world trip data to use as input for the
simulation.

• To design a reinforcement-learning training protocol to train the
fleet of simulated taxis.

• To conduct the experiment, analyse its results, and detemine a pre-
dicted optimal size for the simulated taxis.

1.3 Report Structure

In Chapter 2 I outline the q-learning algorithm, review the state of the art,
and summarize recent research related to the question of autonomous
taxi size.

In Chapter 3 I describe the New York city taxi-demand dataset and train-
ing protocol I used to train my reinforcement-learning models.

In Chapter 4 I describe the taxi simulation engine I built to implement the
training algorithm and discuss the assumptions and trade-offs inherent
in its design.

In Chapter 5 I describe and evaluate the results of my investigation and
consider alternative approaches to the question of determining optimal
taxi size.

10

Chapter 2

Background and Related Work

In this chapter I describe the q-learning algorithm and review related
work in the field.

2.1 Q-learning

Standard yellow taxis in New York city, as in many other cities around
the world, are restricted by law to carrying 4 passengers at a time [9],
but this limit is in part a product of historical technological constraints
which may not apply to future autonomous vehicles. In this project I
have attempted to investigate whether the sizes of individual vehicles
in a hypothetical fleet of autonomous New York taxis can be optimized
using q-learning, a type of reinforcement learning.

Reinforcement learning is itself one of the three main branches of ma-
chine learning, alongside supervised learning and unsupervised learn-
ing [10]. Reinforcement learning is a broad field of study but in general

11

concerns itself with goal-seeking agents attempting to maximize their
cumulative reward by interacting with their environments and learning
from the effects of their actions [11].

2.1.1 Background

Q-learning is a simple, model-free reinforcement learning algorithm first
developed by Christopher Watkins in 1989 as a computational model for
studying animal learning [6]. Just as animals explore their environment
and learn from the consequences of their actions, a q-learning agent will
explore its world of possible states and incrementally improve its evalu-
ation of the ’quality’ of taking particular actions in particular states as it
learns from its experiences. (The ’Q’ in the name q-learning comes from
this idea of estimating the quality of actions.)

Q-learning can be described as primitive or model-free in the sense that
the learning agent has no internal model of its world — it simply takes
actions and observes their consequences [6]. Although simple, the algo-
rithm can be proved to converge; that is, given enough time to explore its
environment, a q-learning agent will eventually be able to determine its
optimal policy for any state, the policy that maximizes its total expected
long-term reward [12].

2.1.2 Algorithm

Let S be the set of possible states an agent can be in and A be the set
of actions the agent can take in these states. The goal of the q-learning
algorithm is to populate a look-up table, Q(S, A), which can be thought
of as a matrix in which each row represents a possible state and each

12

column represents a potential action the agent can take in that state.

Each entry in this table, Q(s, a), is the agent’s current estimate of the
expected value of taking action a in state s, that is, the cumulative dis-
counted reward for doing a in state s and then following the optimal
policy. This q-value incorporates both the immediate reward the agent
receives for choosing the action and the agent’s estimation of the dis-
counted future value of being in state s′, the state it will arrive at after
taking action a in state s.

Initially, we populate the Q-table with a set of arbitrary values, typically
zeros. We then update the table iteratively as the agent learns from its
experiences, where each experience is a tuple of the form:

< s, a, r, s′ >

That is, the agent was in state s, chose action a, received reward r, and
transitioned into state s′. On the basis of this experience we update
the relevant q-value, Q(s, a), according to the temporal difference equa-
tion:

Q(s, a)←− (1− α) ·Q(s, a) + α ·
(

r + γ ·max
a′

Q(s′, a′)
)

(2.1)

In simple terms, we replace the old q-value with a weighted average of
the old value and the return, the new information resulting from the
experience. This equation contains a number of new terms we haven’t
yet defined:

• α is the learning rate, a value between 0 and 1 which determines

13

the agent’s eagerness to learn from new experiences at the expense
of its cumulative knowledge of past experiences. If α is set to 0 the
agent will learn nothing from new experiences and rely solely on
its previous knowledge; if α is set to 1 the agent will discount its
previous knowledge entirely and rely solely on the return from its
most recent experience.

• γ is the discount rate, typically a value between 0 and 1, which
determines the importance the agent places on future rewards. If γ
is set to 0 the agent will be ’myopic’, considering only immediate
rewards; a value closer to 1 encourages the agent to maximise its
long-term payoffs. (If γ ≥ 1 the q-values will diverge, which is
generally not desired [13].)

• maxQ(s′,a′) is the q-value of the agent’s optimal action a′ in its
new state s′; this represents the agent’s estimate of the future value
of transitioning from state s to s′ as a result of action a. (Much of
the power of the q-learning algorithm comes from this deceptively
simple idea — that the value of an action should reflect the values
of the future actions which that action makes possible.)

Figure 2.1 shows a simple graphical illustration of the q-learning algo-
rithm. Iteration will continue until the agent enters a terminal state or
until some other sentinel condition is triggered, depending on the details
of its application.

2.1.3 Policy

We have not yet discussed how an agent chooses which action to take in
any given state. This is determined by the agent’s policy, π; the strategy
it uses to choose among its available actions.

14

Initialize Q-table

Choose Action

Perform Action

Measure Reward

Update Q-table

Iterate

Figure 2.1: Q-learning algorithm.

An agent which always chooses its best action (or rather, its current esti-
mate of its best action) is said to be following a greedy policy. A greedy
policy maximizes the agent’s expected payoff in the short-term but pre-
vents it from exploring its state space and learning about the potentially
greater rewards of untested actions.

A more useful policy, at least initially, is epsilon-greedy, where ε is the
probability that an agent will choose to explore its environment and 1− ε

is the probability that the agent will instead choose to exploit its existing
knowledge. An agent following an epsilon-greedy strategy will choose
randomly from its available actions with probability ε and will choose
its best action with probability 1− ε.

Notably, q-learning is an off-policy algorithm, meaning that an agent
will learn its optimal policy regardless of the policy it happens to be fol-

15

lowing [14]. That is, even if an agent chooses randomly at every opportu-
nity, its q-table will still be updated over time to reflect the best action it
could have taken in each state. (We will take advantage of this feature of
q-learning later by holding ε at 1 for a large number of iterations, forcing
our taxis to explore their state spaces.)

2.2 Related Work

The widely anticipated arrival of autonomous vehicles on our streets in
the near future has fueled a broad range of academic research on related
topics. The research in the field of AI can be divided into two main
categories: research on functional AI, concerned with the immediate
practicalities of autonomous driving such as object detection and colli-
sion avoidance, and research on operational AI, concerned with higher-
level questions such as optimal dispatching and rebalancing strategies
for fleets of autonomous vehicles. Our concern here will be with the
second category of research.

2.2.1 Definitions

Terminology in this fast-moving field is fluid, so we will begin by clarify-
ing our definitions of a number of important terms.

AV
Autonomous Vehicle. A vehicle which operates independently with-
out a human driver or controller [15][16].

SAV
Shared Autonomous Vehicle. An autonomous taxi [17][18][19][20][21].

16

MoD
Mobility-on-Demand. This term is used to describe transportation
systems in which consumers make short-term use of hired vehicles
[15][18][22][23]. It includes taxi services and short-term car, bike,
and scooter rentals but not bus or train services which run on fixed
routes.

AMoD
Autonomous Mobility-on-Demand. This term is commonly used
in the literature to describe taxi services supplied by autonomous
vehicles [15][18][23][24].

SAMoD
Shared Autonomous Mobility-on-Demand. An autonomous taxi
service which incorporates ride-sharing, enabling multiple passen-
gers with compatible itineraries to travel together simultaneously
in a single taxi [18].

DRS
Dynamic Ride-Sharing. The practice of pooling multiple travelers
with similar origins, destinations, and departure-times together in
the same taxi [25].

2.2.2 Literature Review

Spieser et al. (2015) investigated potential rebalancing strategies for fleets
of autonomous vehicles using rental data from existing free-floating car-
sharing services operating in Europe and North America [23]. The au-
thors argue that a fleet’s rebalancing strategy in the face of uneven geo-
graphical demand has a critical impact on its performance metrics both
from the consumer’s and the fleet operator’s perspectives.

17

Guériau and Dusparic (2018) used agent-based reinforcement learning to
investigate decentralized solutions to this question of autonomous fleet
rebalancing [18]. In their model independent ride-sharing autonomous
vehicles use q-learning to optimise their individual repositioning poli-
cies, learning from their experience of historical demand patterns in dif-
ferent geographical regions. They trained their agents using taxi data
from New York city and concluded that their decentralized approach
could match the performance efficiency of centralized dispatching while
accommodating the potential for heterogeneous vehicle fleets with multi-
ple, non-coordinating operators. This study assumed a uniform four-seat
capacity for its autonomous vehicles.

Alonso-Mora et al. (2017) also used taxi data from New York city to
investigate vehicle routing strategies for autonomous taxis [22]. They de-
veloped a constrained optimization algorithm to generate optimal routes
for taxis with varying passenger capacities up to a maximum of ten seats.
They concluded that existing demand in New York city could be serviced
by a fleet of just 2,000 ten-seat ride-sharing taxis, representing a reduc-
tion in the fleet size to 15% of its current value.

Dia and Jananshour (2016) conducted a small-scale simulation-based study
to investigate the potential impact of shared autonomous vehicles on de-
mand for vehicle ownership and on-street parking in an urban environ-
ment, using commuter data from Melbourne, Australia [15]. They con-
cluded that the introduction of shared autonomous vehicles could result
in significant reductions in both, though at the expense of a considerable
increase in individual VKT (vehicle-kilometers travelled) per vehicle. Ve-
hicles in this study were assumed to have a capacity of between two and
four seats.

Bischoff and Maciejewski (2016) used a large-scale simulation of all road
traffic in Berlin to investigate the potential for autonomous taxis to com-

18

pletely replace private car ownership in the city [16]. They focussed on
optimizing their dispatching strategy to maximise taxi utilization and
passenger throughput and concluded that a fleet of 100,000 autonomous
taxis would be sufficient to service demand in the city, with each au-
tonomous taxi replacing ten CDVs or ’conventionally driven vehicles’.
This study did not consider ride-sharing as an option and individual
vehicle size was not specified.

In a later study, Bischoff and Maciejewski (2017) used the same simula-
tion engine with a real-world taxi data set from Berlin to investigate the
potential efficiency of ride-sharing taxi services in the city [20]. They con-
cluded that ride-sharing could reduce overall vehicle kilometers travelled
by up to 20% with minimal impact on passenger journey times. Vehicles
in this study were assumed to have uniform capacities of 4, 6, or 8 seats
and passengers were assumed to travel alone or in pairs. The authors
argue that high-capacity vehicles have higher fixed and variable opera-
tional costs, making capacities of 8 or greater inefficient as scheduling
constraints mean that taxis are unlikely to be able to service more than
three requests simultaneously.

Levin et al. (2017) developed a flow-based simulation model to investi-
gate the impact of dynamic ride-sharing on traffic congestion in down-
town Austin [19]. They compared scenarios involving private vehicles
and SAVs and found that, in the absence of ride-sharing, empty reposi-
tioning trips by SAVs could increase traffic congestion and travel times.
They concluded that ride-sharing is highly effective at reducing conges-
tion by combining traveler trips, and that travel times can be optimized
by keeping the fleet size as small as possible. Vehicles in this study had
a uniform capacity of four seats.

19

2.2.3 Summary

There has been a considerable amount of academic research on poten-
tial dispatching, rebalancing, and ride-sharing strategies for fleets of au-
tonomous taxis, but relatively little attention has been given to the ques-
tion of optimal vehicle size within these fleets. In particular, this paper’s
application of agent-based reinforcement learning techniques represents
a novel approach to an important question with significant practical im-
plications for real-world deployments.

20

Chapter 3

Design

In this chapter I describe the New York City taxi dataset I used in this
project as input for my taxi simulation engine. I also describe the reward
metric and training protocol I used to train my reinforcement-learning
taxi models.

3.1 New York Taxi Data

The New York City Taxi and Limousine Commission (TLC) is the agency
responsible for licensing and regulating New York City’s famous yellow
(or ’Medallion’) taxi cabs, along with a variety of other taxi and limousine
services in the city. Since 2009 the TLC has publicly released an annual
dataset containing records of every yellow taxi trip in the city, including
the pick-up and drop-off locations, the pick-up and drop-off times, and
the number of passengers carried [26]. These enormous datasets have
been a treasure trove for AI researchers seeking real-world data to model
demand for future autonomous taxi services [18] [22].

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Day (February 2016)

0

10000

20000

30000

40000

50000

60000

70000

80000
N
um

be
r
of
 T
ri
ps

Figure 3.1: Daily number of trips in the filtered dataset over the month of February
2016.

For this project I used a subset of this trip data taken from the yellow
taxi dataset from 2016 to model demand for a hypothetical fleet of au-
tonomous taxis servicing commuters on the island of Manhattan. (I re-
stricted my analysis to Manhattan as I believe it is likely that this kind
of autonomous taxi system will be implemented first in geographically
restricted areas where human-driven vehicles can feasibly be excluded. I
chose the dataset from 2016 as this was the last year to include GPS co-
ordinates for each trip’s pick-up and drop-off locations; in subsequent
years only the pick-up and drop-off zones are recorded.)

To assemble a representative sample I took the data for one full month
(February), excluded any trips with a pick-up or drop-off location out-
side the island of Manhattan, and extracted four hours worth of requests
for each day, taking the interval from 8 a.m. to 12 noon. This gave me
approximately 60,000 requests per day, or about 1.85 million requests

22

overall.

Figure 3.1 shows a plot of the daily number of trips in this filtered dataset.
The weekly demand cycle is particularly noticeable with demand being
lightest at the weekends and peaking midweek on Wednesdays or Thurs-
days. (In calibrating the model I later developed to determine the num-
ber of taxis required to meet demand I took care to ensure that the fleet
size met its minimum service requirements on its worst day as averaging
performance over one or more weeks could mask unacceptable service
levels on peak days.)

Figure 3.2 shows heatmaps of pick-up and drop-off locations in Manhat-
tan constructed from the filtered dataset for the first week of February
2016. Both pick-ups and drop-offs show strong geographical clustering
with particular hotspots at the south end of Central Park and in the finan-
cial district around Wall Street. (This clustering would be an important
factor in designing a repositioning strategy for the model.)

3.2 Applying Q-learning

Reinforcement learning is not, perhaps, an obvious strategy for optimiz-
ing the size of autonomous taxis. Taxis do move around their environ-
ments a lot but they don’t, in general, learn much from their experiences,
and (even worse) have historically demonstrated an obstinate tendency
to remain fixed in size.

If we want our taxis to learn then we first need to make them teachable,
and to do that we need to make them growable.

We will assume, therefore, that for the purposes of this experiment every

23

(a) Pick-up locations. (b) Drop-off locations.

Figure 3.2: Heatmap showing pick-up locations (in green) and drop-off locations (in
red) for the first week of February 2016, 8 a.m. to 12 noon.

24

taxi in our fleet has the ability to grow and shrink its seating capacity at
will, adding additional seats at some times and removing them at others.
If we require a physical analogue we can perhaps imagine that these
high-tech future vehicles are modular and can add or remove seating
pods to their base configuration. More prosaically, we might imagine
that the taxis themselves remain fixed but the taxi operator experiments
with differently sized vehicles on different days.

We will revisit this assumption later and question if reinforcement learn-
ing is genuinely a good fit for our problem domain, but for now our taxis
are teachable and our primary concern at any rate is with their final state
rather than the path they take to get there.

3.2.1 Reward Metric

To apply q-learning or indeed any reinforcement learning algorithm to
our taxis we need a suitable reward metric, a single number r which
measures the taxi’s performance and gives the algorithm a target to opti-
mise.

In the real world the most obvious reward metric for a taxi is profit —
taxi services are generally run as commercial enterprises and will natu-
rally seek to maximise their profit over time. There are two significant
problems with using profit as a reward metric however:

• Simply attempting to optimize operator profit ignores those factors
which in economics are known as externalities — the set of social
and environmental costs and benefits which are invisible to the fi-
nancial calculus of profit and loss [27]. (Pollution from car exhausts
is a classic example of an externality; the pollution imposes a cost
on those who are affected by it which is not borne by the polluter.

25

Our autonomous taxis would presumably be electrically-powered
but would undoubtedly have characteristic positive and negative
externalities of their own.)

• Even if we were happy to use raw operator profit as our reward
metric, determining the profit function to use would require an
unfeasible number of assumptions about future technology, future
operating costs, and the future economic environment in which our
taxis will operate [28][29][30].

Fortunately there is a simple proxy we can use as a substitute for our
ideal metric of externality-adjusted operator profit. This is weighted
passenger distance.

The idea is straightforward. If a taxi’s passenger distance for a trip is
its distance-travelled times the number of passengers carried, then its
weighted passenger distance is this figure weighted by the utilised pro-
portion of its capacity, i.e.

distance travelled× no. o f passengers× no. o f passengers
taxi capacity

(3.1)

For example, if a three-seat taxi carries two passengers a distance of
15km, its weighted passenger distance for the trip would be:

15× 2× 2
3
= 20 (3.2)

This simple metric is intuitively robust and captures two key ideas:

1. More passengers are better than fewer passengers.

26

2. Empty capacity is wasted capacity and imposes costs on the opera-
tor, on other commuters, and on the environment.

We should note immediately that point 1 is only valid for a ridesharing
taxi model with per-seat pricing. This is not the model we currently use
to price taxi fares — if I hire a taxi today I pay the same fare for the
trip whether I travel alone or bring three friends along with me for the
ride; we take it for granted that when we hire a taxi we’re renting its
entire capacity, regardless of how much of that capacity we actually use.
Adopting weighted passenger distance as our reward metric assumes
that our taxis will function more like small, hailable, free-floating buses
than contemporary taxis.

Is this a realistic assumption? Ridesharing services have certainly in-
creased in popularity in recent years and this trend seems likely to con-
tinue. Commuters will always be faced with trade-offs between privacy,
personal space, financial cost, and time cost, and it seems plausible that
ridesharing services where passengers pay individually by the seat will
be a welcome additional option for many.

We will make one last adjustment to our metric to determine our final re-
ward function; that is, to divide each taxi’s weighted passenger distance
by the total distance the taxi has travelled over the course of the day. This
incorporates a penalty for empty travel into our metric, the third and last
key idea we want it to capture.

Our reward metric r is then given by the formula:

r =
weighted passenger distance

total distance travelled
(3.3)

27

3.2.2 Training Protocol

We now have a set of training data, a reinforcement learning algorithm,
and a reward metric for our taxis. Our next steps will be:

1. To develop a taxi simulation engine capable of simulating taxi trips
in Manhattan using real-world demand data drawn from the New
York City dataset.

2. To calibrate this model to determine the number of standard 4-seat
taxis required to adequately service demand.

3. To develop a reinforcement learning protocol, run it against our
simulated taxi fleet, and analyse the results.

Chapter 4 describes the taxi simulation engine and its implementation
of q-learning. Chapter 5 describes the training process and analyses its
results.

Our provisional training protocol will proceed as follows:

• We will begin with our baseline fleet of 4-seat ridesharing taxis.
Each taxi in the fleet will be modelled as an independent q-learning
agent with its own individual q-table.

• A taxi’s state will be its size and the actions available to it will be
to subtract one from its size, to remain at the same size, or to add
one to its size.

• The training process will be divided into days, each using one day’s
worth of requests from the filtered dataset, and running in a con-
tinuous loop as required.

28

• At the beginning of each day, each taxi will choose from its avail-
able actions. The taxi will choose to explore its state space with
probability ε (choosing randomly) or will choose to exploit its ex-
isting knowledge with probability 1− ε (choosing its best option).

• The simulation will then run for one day. At the end of the day
each taxi will determine its reward metric and update its q-table.

The training process will last for 2,000 days in total, divided into three
phases. For the first 1,000 days each taxi’s ε parameter will be held fixed
at a value of 1, forcing the taxis to explore their state space; over the next
500 days ε will slowly be reduced to zero, transitioning the taxis from
explore to exploit mode; finally, the simulation will run for a further 500
days to allow the taxis to settle into a steady state.

This protocol is provisional — our first guess at a suitable training regi-
men for growable taxis. We will re-evaluate it as we go and adapt it as
necessary in the light of its results.

29

Chapter 4

Implementation

In this chapter I describe the taxi simulation engine I built to train my
simulated fleet of autonomous taxis and discuss the assumptions and
tradeoffs inherent in its design.

4.1 Building a Simulation Engine in Python

Before I could begin training any taxis I had to build a simulation en-
gine capable of simulating taxi trips using request data from the New
York City dataset. I chose to build this simulation engine in Python, a
language known for its flexibility, speed of development time, and exten-
sive library support. (Python’s disadvantages include its slow execution
speed and poor native support for parallelization, issues we will return
to later.)

30

4.1.1 Assumptions and Parameters

To complete the simulation engine in a reasonable amount of time I made
one primary simplifying assumption — that simulated taxis would al-
ways travel in straight-line paths towards their current destination. This
is obviously unrealistic and ignores the underlying geography of the
road system but is a relatively good approximation for short trips in
a small, convex region with a dense road network like Manhattan. (Re-
stricting the analysis to trips within Manhattan had the advantage of
excluding geographical choke-points like bridges and tunnels.)

To ensure the model didn’t stray too far from reality I looked at all 1.85
million requests in the dataset and calculated the average speed at which
these taxis would have travelled had they taken straight line paths. (The
data for each request included the pick-up and drop-off times and GPS
co-ordinates for the pick-up and drop-off locations, making this analysis
possible.)

I used this average speed, which turned out to be approximately 12
km/h, as the speed for all taxis in the simulation. (Like all the numerical
assumptions we will discuss in this chapter, taxi speed is not hard-coded
in the model but implemented as a parameter which can be chosen per-
simulation run.)

4.1.2 Tick Time

A second significant model parameter is the tick time, an interval mea-
sured in seconds of in-world simulation time which determines the fre-
quency at which the engine recomputes the state of the world. (For ex-
ample, a ten-second tick means that the engine recomputes the location

31

of every taxi and passenger and runs its dispatching and repositioning
routines at ten second intervals.)

Selecting a tick time involves making a direct trade-off between the gran-
ularity of the simulation and its execution speed — a simulation using a
one-second tick takes roughly ten times longer to run than a simulation
using a ten-second tick.

I found through experimentation that I could increase the tick time to
60 seconds without significantly impacting the results of the simulation.
This was surprisingly longer than I had expected and provided a wel-
come speed boost to the engine, making longer training times possible
for the q-learning algorithm.

4.1.3 Dispatching

The dispatching routine is the most computationally expensive part of
the simulation and proved to be the engine’s primary bottleneck in terms
of execution speed, particularly in simulations with ridesharing enabled.

The dispatching algorithm itself is conceptually simple. Incoming re-
quests are added to a dispatch queue. The engine iterates over this
queue once per tick and attempts to dispatch the closest available taxi
to service each request, where ’available’ means the closest idle taxi if
ridesharing is disabled or the closest taxi with sufficient spare capacity
and a compatible itinerary if ridesharing is enabled.

The problem is that to determine the closest taxi the engine needs to calcu-
late the distance from the passenger’s pick-up location to every available
taxi, which in the worst case means every taxi in the simulation, and it
needs to do this for 60,000 requests per day. (If ridesharing is enabled

32

the problem is even worse as the engine has to perform multiple distance
calculations just to determine if a taxi is available.)

As the engine models pick-ups and drop-offs at a point-to-point level
of granularity using arbitrary GPS coordinates (instead of using a fixed
set of predetermined pick-up and drop-off locations), none of these dis-
tances can be precomputed but have to be calculated on the fly.

To solve this problem I introduced the idea of dispatch zones, as illus-
trated in Figure 4.1. Each small rectangle on this map is a 0.01◦ latitude
by 0.01◦ longitude ’zone’ (approximately 1,100m by 850m). The engine
keeps track of which taxis are in which zones at all times and when dis-
patching a request checks only the passenger’s own pick-up zone and
the eight immediately-neighbouring zones for candidate taxis.

As a further optimization I introduced the idea of an instant dispatch
radius, measured in minutes of driving time. Every available taxi within
this radius of the passenger’s pick-up location counts as being ’the clos-
est’, so the engine short-circuits to dispatching the first one it finds. (The
instant dispatch radius is one of the engine’s configurable parameters; I
used a value of 1 minute for all my simulation runs.)

4.1.4 Repositioning

Determining an optimal repositioning strategy for idle taxis is a complex
problem which can be studied in its own right [18], but as this question
wasn’t the focus of my project I decided to adopt a simple probabilistic
model based on observed historical demand.

To construct this model I looked at all 1.85 million requests in the dataset
and assigned a weight to each zone proportional to the total number of

33

Figure 4.1: Zone map of Manhattan. Each small block on this map is a 0.01◦ latitude
by 0.01◦ longitude zone (approximately 1,100m by 850m).

34

pickups originating in that zone.

The simulation engine has a configurable mean time to reposition pa-
rameter, measured in minutes, which determines the average time an
idle taxi will wait before repositioning itself. (The default setting is 10
minutes.) The engine takes this parameter and, by modelling reposition-
ing events as a Poisson point process, converts it into a per-tick proba-
bility that an idle taxi will decide to reposition. If a taxi does decide to
reposition, it chooses its destination zone by selecting randomly from the
weighted distribution.

4.1.5 Ridesharing

The simulation engine can be run with or without ridesharing enabled.
When ridesharing is disabled, the dispatching routine considers only idle
or repositioning taxis as available for picking up pending requests; when
ridesharing is enabled, it also considers active taxis with passengers al-
ready onboard as available if they have sufficient spare capacity and a
’compatible’ itinerary.

In deciding if a taxi’s itinerary is compatible with a request there are two
questions to ask: first, would the current occupants of the taxi be willing
to accept the necessary detour to pick up the new passenger, and second,
would the prospective passenger be willing to accept the offered position
in the taxi’s drop-off itinerary or would they prefer to wait in the hope
of finding a more direct ride to their destination?

To answer these questions the simulation engine uses the idea of a ride-
sharing multiplier, a parameter with a default value of 1.1 correspond-
ing to a 10% increase in journey time. That is, if the detour to pick up
a new passenger will add less than 10% to their remaining journey time,

35

1 2 3 4 5 6 7
Passenger Group Size

0

10

20

30

40

50

60

70

Pe
rc
en

ta
ge

 o
f T

ot
al
 R
eq

ue
st
s
(%

)

Figure 4.2: Passenger group size as a percentage of total trips.

we assume that the current occupants of the taxi will accept it. Similarly,
if the offered rideshare adds less than 10% to the prospective passenger’s
direct journey time, we assume that the passenger will accept it.

Designing an optimal ridesharing algorithm for autonomous taxis is a
complex problem whose subtleties are beyond the scope of this project
but, as we shall see, this simple model turns out to be quite effective.

4.1.6 Groups and Splitting

Figure 4.2 show a plot of passenger group size as a percentage of total
trips in the New York City dataset. Most trips consist of commuters
travelling alone (74%) or in pairs (12%), but larger group sizes are still
numerically significant — of the 1.85 million trips in the dataset, 100,000
were by groups of size 5 while 69,000 were by groups of size 6.

36

There is no obvious answer to the question of how we should handle
these larger group sizes in our hypothetical future scenario of variably-
sized taxis. Are these passenger groups atomic or would they be pre-
pared to split up and travel separately if that meant they reached their
destination sooner?

To handle this aspect of the model I introduced the idea of a group split
size, a parameter with a default value of 4, and a group split time, a
parameter with a default value of 5 minutes. With these settings, if a
group of 4 or more passengers has waited longer than 5 minutes without
finding a taxi, we assume that the group will split in half and each half
will attempt to find a taxi separately. (The motivating assumption here is
that a group will be prepared to split as long as no member has to travel
alone.)

4.1.7 Execution Speed

Python is a slow language, typically two orders of magnitude slower
than C, so getting the simulation to run at an acceptable rate on the
available hardware (a Core i5 MacBook Pro) proved a challenge. My
first implementation took two hours to process a single day’s worth of
requests and would have required 167 days to run the full 2,000 day
training routine.

Thankfully I was able to improve its speed considerably. The initial bot-
tleneck turned out to be an external geocoding library I was using to cal-
culate distances between GPS coordinates — reimplementing this func-
tionality myself resulted in a 1,500x speed boost for this section of the
code.

(My implementation uses the haversine formula to determine the great-

37

circle distance between two points on the earth’s surface, given their
latitudes and longitudes [31]. The haversine formula models the earth
as a perfect sphere which isn’t strictly true so its accuracy is limited
to 0.5% or 5 meters per kilometer, which I considered sufficient for the
simulation. More accurate techniques which use an ellipsoidal model of
the earth are possible but are considerably slower to calculate.)

This single change reduced the runtime of the simulation to roughly
3 minutes per day, an enormous improvement, although it would still
have taken 100 hours to run the full training routine. I found that I
could gain an additional 10x speed boost without making any changes
to the code simply by running the simulation using PyPy rather than
the default CPython interpreter. (PyPy is an alternative implementation
of the Python language which uses a just-in-time compiler to boost the
speed of long-running programs.) This brought the runtime down to
approximately 20 seconds per day, or roughly 6 hours per thousand days
of simulation time.

Along the way I tried some other speedup strategies which proved less
successful. One of these was caching. The dispatch routine calculates
certain point-to-point distances multiple times so it seemed a promising
strategy to cache these results in RAM to avoid multiple calls to the
distance function. In practice it turned out that the cache’s dictionary
lookups were more expensive than simply recalculating the distance each
time and caching actually slowed down the simulation.

One other strategy which I considered but in the end didn’t require was
parallelization. The simulation’s most computationally-expensive com-
ponent, the dispatch loop, is highly parallelizable and in an ideal imple-
mentation its speed would scale directly with the number of CPU cores
available. Python has poor native support for parallelizing CPU-bound
tasks, however, and can only utilise multiple cores by running the par-

38

0 5 10 15 20 25 30
Day

0

1

2

3

4

5

6

M
ea

n
W
ai
t
Ti
m
e
(m

in
ut
es
)

5500 taxis, no ridesharing
3600 taxis, ridesharing
service threshold

Figure 4.3: Mean passenger wait time (calculated daily) over one month.

allel threads in separate processes (i.e. using a multiprocessing rather
than multithreading model). In the end I judged that the potential 2x
speed boost available on my dual-core system couldn’t justify the ad-
ditional complexity that parallelizing the engine would have added to
the codebase as the runtime was already fast enough for the project’s
purposes.

4.2 Calibrating the Model

To calibrate the model and determine the number of taxis required to
service demand I decided to use two performance metrics — the number
of timeouts and the mean passenger wait time.

39

• Passengers won’t wait forever for a taxi to be dispatched; if they’re
left waiting too long they’ll give up and find an alternative means
of transportation. We say that a request times out if a passenger
has been waiting longer than the engine’s timeout parameter (by
default, ten minutes) without a taxi being dispatched to service
their request. To calibrate the model, I chose a service threshold of
less than 0.5% for timeouts, that is, less than 5 requests out of every
thousand should time out.

• The passenger wait time is the total time a passenger spends wait-
ing for a taxi from the moment they submit their request until the
moment their taxi arrives. To calibrate the model, I chose a service
threshold of less than five minutes for the mean passenger wait
time.

Applying these service thresholds to the taxi fleet’s performance on its
worst day, the model predicts that 5,500 taxis are required to service
demand if ridesharing is disabled while only 3,600 taxis are required if
ridesharing is enabled.

Figure 4.3 shows a plot of mean passenger wait time (calculated daily)
over one full month for both the ridesharing (in red) and non-ridesharing
(in blue) taxi fleets. Figure 4.4 shows a plot of the timeout percentage
(calculated daily) over the same full month for both the ridesharing (in
red) and non-ridesharing (in blue) taxi fleets.

Figure 4.5 shows the paths of two sample taxis, one each from the rideshar-
ing and non-ridesharing fleets, over a four-hour period from 8 a.m. to 12
noon on a single day.

40

0 5 10 15 20 25 30
Day

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m
eo

ut
 P
er
ce
nt
ag

e

5500 taxis, no ridesharing
3600 taxis, ridesharing
service threshold

Figure 4.4: Timeout percentage (calculated daily) over one month.

4.3 Implementing Q-learning

With the simulation engine complete, implementing the q-learning al-
gorithm was a simple task. Each taxi has its own individual q-table, a
matrix in which each row represents a possible state the taxi can be in (a
possible size) and the columns represent the actions available to the taxi
in that state (typically to add one to its size, to subtract one from its size,
or to remain unchanged). An individual entry in the matrix represents
the taxi’s estimate of the long-term value of choosing that particular ac-
tion in that particular state (the ’quality’ of the action). A sample q-table
for a trained taxi is shown in Appendix B.

The q-learning algorithm has two parameters, α, the learning rate, and
γ, the discount rate, which are implemented as engine parameters.

41

(a) No ridesharing. (b) Ridesharing.

Figure 4.5: Sample taxi paths over a four-hour period, 8 a.m. to 12 noon. A black dot
marks the taxi’s starting location, green dots indicate pick-ups, and red dots
indicate drop-offs.

42

• For α I chose a value of 0.25, low enough to ensure that taxis
wouldn’t place undue weight on uncharacteristic returns from par-
ticularly unlucky days.

• For γ I chose a value of 0.9 to ensure the taxis placed a high value
on maximizing their long-term reward.

I also implemented a global maximum size parameter and chose an ini-
tial upper limit of 16 to ensure the taxis would actually explore their state
space instead of embarking on a random walk to infinity. (This value was
my first estimate of a number that would be safely ’too big’ to be opti-
mal. I intended to revise this estimate if the results showed that larger
taxi sizes were favoured; in the event, this proved unnecessary.)

43

Chapter 5

Results & Evaluation

In this chapter I describe the results of applying the reinforcement-learning
training protocol developed earlier to a fleet of simulated autonomous
taxis. I discuss the optimality of the q-learning approach and develop
and apply a simpler reinforcement-learning algorithm to the taxi fleet.

5.1 Preliminary Investigation

I began the investigation with a preliminary training run lasting for 2000
days of simulation time. This run was divided into three phases:

• For the first 1000 days, each taxi’s ε parameter (its probability of
choosing to ’explore’ rather than ’exploit’) was held constant at 1;
this meant that each day each taxi would randomly choose from its
available actions without attempting to maximize its payoff. This
phase was intended to give the taxis time to explore their state
space and populate their q-tables.

44

• Over the next 500 days, each taxi’s ε parameter was slowly reduced
to zero. This encouraged the taxis to focus-in on their most promis-
ing states and spend their time investigating the regions around
them.

• The simulation then ran for a further 500 days with ε set to zero;
each taxi now operated solely in ’exploit’ mode and chose its best
option at every opportunity. This final phase gave the taxis time to
settle into a steady state.

5.1.1 Setup

For this training run I used a fleet of 3,600 taxis with ridesharing enabled.
Each taxi’s maximum size was set to 16.

5.1.2 Results

Figure 5.1 shows the distribution of taxi sizes over the course of the 2000-
day training run. The result is a clear preference for size 7, with sizes
6 and 8 the closest runners-up. This preference for size 7 is even more
clearly visible in Figure 5.2 which shows the distribution of sizes on the
final day of training.

• Size 6 accounts for 817 out of 3600 taxis, or 23% of the total.
• Size 7 accounts for 1242 out of 3600 taxis, or 35% of the total.
• Size 8 accounts for 530 out of 3600 taxis, or 15% of the total.
• Together, sizes 6, 7, and 8 account for 73% of the final distribution.

45

Figure 5.1: Distribution of taxi sizes over 2000 days of training.

46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Taxi Size

0

200

400

600

800

1000

1200

N
um

be
r
of
 T
ax

is

Figure 5.2: Distribution of taxi sizes on the final day of training (2000 runs).

5.1.3 Performance Metrics

So how does this ’optimal’ size distribution affect our passenger service
metrics? I re-ran the simulation for one month using the final distribu-
tion of taxi sizes from day 2000 of the training period. Figure 5.3 shows
the daily percentage of timeouts for this distribution in red, contrasted
in blue with the daily percentage of timeouts for the same simulation
run using 3,600 4-seat taxis. Figure 5.4 shows mean passenger waiting
times for the same two simulations and Figure 5.5 shows mean passenger
journey times.

We can see that with respect to timeouts and mean waiting times the
trained distribution performs significantly better than the uniform distri-
bution; passenger journey times are also slightly reduced although the
difference is negligible. This is an interesting result as the training al-

47

0 5 10 15 20 25 30
Day

0.0

0.1

0.2

0.3

0.4

Ti
m
eo

ut
 P
er
ce
nt
ag

e

uniform taxi size
trained distribution

Figure 5.3: Timeout percentage (calculated daily) over one month for the trained dis-
tribution (in red) and the default uniform distribution of size 4 (in blue).
Both simulations used 3,600 taxis with ridesharing enabled.

gorithm made no attempt to optimize these passenger metrics — it was
primarily concerned with optimizing performance from the taxi’s own
perspective. The improved service for passengers is in this respect a
happy coincidence.

This outcome is likely a straightforward product of an increase in overall
system capacity resulting from the training. Our initial uniform distri-
bution of 3,600 4-seat taxis had a total capacity of 3, 600× 4 = 14, 400.
Our trained distribution, in contrast, has a total capacity of 24, 719, an
increase of over 70%.

48

0 5 10 15 20 25 30
Day

0

1

2

3

4

5

M
ea

n
W
ai
t
Ti
m
e
(m

in
ut
es
)

uniform taxi size
trained distribution

Figure 5.4: Mean passenger waiting time (calculated daily) over one month for the
trained distribution (in red) and the default uniform distribution of size 4
(in blue). Both simulations used 3,600 taxis with ridesharing enabled.

0 5 10 15 20 25 30
Day

11.0

11.5

12.0

12.5

13.0

13.5

M
ea

n
Jo
ur
ne

y
Ti
m
e
(m

in
ut
es

)

uniform taxi size
trained distribution

Figure 5.5: Mean passenger journey time (calculated daily) over one month for the
trained distribution (in red) and the default uniform distribution of size 4
(in blue). Both simulations used 3,600 taxis with ridesharing enabled.

49

5.2 Confirmation

Our preliminary investigation has given us a clear result: in this model,
taxis overwhelmingly prefer to be at or around size 7. But is this result
reliable? In particular, the value of 7 looks suspiciously close to the
midpoint of the allowed range of sizes. This raises the question: is this
result simply an artifact of the training protocol, perhaps the product of
some unanticipated bias towards the midpoint?

To investigate this hypothesis I decided to double the maximum possi-
ble taxi size to 32 and re-run the simulation over a substantially longer
6,000 day period. As before, this training run was divided into three
phases:

• An initial 4,000-day exploration phase with each taxi’s ε parameter
held constant at 1.

• A 1,000-day transition phase with ε slowly decaying to zero.

• A final 1,000-day cooldown phase to allow the distribution to settle
into a steady state.

Figure 5.6 shows the distribution of taxi sizes over the course of this train-
ing run. Once again 7 is the preferred size by a clear margin, with 6 and
8 as the closest runners-up. Figure 5.7 shows the final size distribution
on day 6,000 — clear confirmation of our initial result. Indeed, the longer
training run seems to have resulted in a significantly stronger preference
for size 7.

• Size 6 accounts for 918 out of 3,600 taxis, or 26% of the total.
• Size 7 accounts for 1,445 out of 3,600 taxis, or 40% of the total.
• Size 8 accounts for 571 out of 3,600 taxis, or 16% of the total.

50

Figure 5.6: Distribution of taxi sizes over 6000 days of training.

• Together, sizes 6, 7, and 8 account for 82% of the final distribution.

5.3 Rethinking Q-learning

With the benefit of experience we can now re-examine our approach and
ask if q-learning is genuinely a good fit for our problem domain. The
answer, I think, is that it isn’t a bad fit but it’s unlikely to be optimally
efficient.

The problem is that q-learning introduces an artificial path dependency

51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Taxi Size

0

200

400

600

800

1000

1200

1400
N
um

be
r
of
 T
ax

is

Figure 5.7: Distribution of taxi sizes on the final day of training (6000 runs).

into our model which has no parallel in our particular reality. Put simply,
given any finite number of training episodes, a q-learning agent can get
trapped at a local maximum with no path to a global maximum that it
already knows about. In our case, a three-seat taxi could ’want’ to be a
seven-seat taxi but have no way of reaching that goal because four seats
are worse than three and its estimate of its best action given its current
state is to stay where it is. (Table B.2 in Appendix B shows a q-table from
one of our trained taxis which has found itself trapped in just this sort of
situation.)

This path dependence isn’t a fundamental problem for applying q-learning
to our domain; the algorithm is guaranteed to converge on a path to the
global maximum given a sufficient number of training episodes. In prac-
tice, however, this number could be very large — inefficiently large, as
the path dependency doesn’t reflect any kind of fundamental real-world
constraint on our taxis. A three-seat taxi doesn’t really have to endure

52

the purgatory of being a four-seat taxi on its way to seven-seated nirvana.
To the extent that it could change its size at all it could presumably add
four seats in one go and be done with it.

An obvious solution to this problem is to give our taxis additional ac-
tions to choose from — to add or subtract two, three, or even four seats
at a time. In practice this would increase the state space enormously
and require even longer training times to explore. But alternative re-
inforcement learning techniques which don’t assume path dependence
may prove more efficient.

5.4 Monte Carlo Reinforcement Learning

One potentially promising alternative technique is Monte Carlo sample
learning, machine learning terminology for trying different things at ran-
dom and seeing what works best [11].

This algorithm is simple to implement. Its goal is to learn a value func-
tion V(s), whose value is the expected return from being in state s calcu-
lated as the mean value of the agent’s reward over all its experiences of
s.

I applied this algorithm to our taxi simulation using a simple training
protocol. Each taxi maintains an individual state table representing its
current estimate of V(s) for every possible state. At the start of each day
each taxi is randomly assigned a size, s. The simulation then runs and at
the end of the day each taxi determines its reward metric and updates its
state table entry for V(s) by calculating an incremental mean, i.e.

53

Figure 5.8: Distribution of preferred taxi sizes over 1,000 days of training using Monte
Carlo sample learning.

V(s)←− V(s) +
r−V(s)

ns
(5.1)

where r is the reward and ns is the number of times the taxi has visited
state s. At any given time a taxi’s preferred state is the state with the
highest value for V(s).

I applied this training protocol to a fleet of 3,600 taxis with ridesharing
enabled. Figure 5.8 shows the distribution of preferred states over 1,000
days of training. Figure 5.9 shows the distribution of preferred states on
the final day. (A sample state table from one of these taxis is shown in

54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Taxi Size

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r
of
 T
ax

is

Figure 5.9: Distribution of preferred taxi sizes after 1,000 days of Monte Carlo sample
learning.

Table C.1 in Appendix C.)

There are two main points to note. First, this model seems to confirm
q-learning’s preference for size 7, although the taxis are now largely in-
different between sizes 6 and 7. More interesting is the speed with which
the taxis converged on this preference, reaching a good approximation
of their final distribution within just 200 days. This is much faster con-
vergence than q-learning could achieve.

So why does Monte Carlo sample learning favour size 6 more than q-
learning? I suspect the discrepancy may be another side-effect of q-
learning’s path dependence. Part of the value of being in state 7 as far
as q-learning is concerned is that it lets you transition into states 6 and 8,
both of which are also pretty good. But this isn’t a feature of the model
we’re interested in so for us sample learning may not only be more ef-

55

ficient than q-learning — it may also be giving us a truer picture of the
intrinsic value of the states in-and-of themselves.

56

Chapter 6

Conclusion

This investigation of optimal autonomous taxi size has given us a clear
prediction — AI taxi agents trained on real-world data using reinforce-
ment learning overwhelmingly prefer a size of or about 7.

So how much weight should we place on this prediction? We can expect
our results to be particularly sensitive to three important factors: the
demand data used for training, the reward metric used to measure the
taxis’ performance, and the ridesharing algorithm used by the simulation
engine to service trip requests.

• Our taxis have been trained on one set of data from one particular
region of one particular city; our results may or may not transfer to
other locations with their own unique demand patterns. This is a
question which can only be answered empirically by further work.

• Our reward metric, weighted passenger distance, is a simple proxy
for externality-adjusted operator profit. In particular, it assumes
that autonomous taxis will function as small, hailable, free-floating

57

buses, charging passengers by the seat. Our prediction is unlikely
to apply to taxi fleets which do not function in this manner.

• The simulation engine uses a conservative ridesharing algorithm
which likely significantly underestimates the potential for rideshar-
ing opportunities. If this is true, it suggests that in practice larger
taxi sizes may in fact be optimal.

Granted these caveats, I believe we have a robust result with interesting
real-world implications. Predicting the future may well be a job for a one-
handed economist but when it comes to buying shares in autonomous
taxi companies our model says that seven seats is the lucky number to
watch out for.

58

Bibliography

[1] Lawrence D. Burns. Sustainable mobility: A vision of our transport
future. Nature, 497:181–182, 2013.

[2] Niels Agatz et al. Optimization for dynamic ride-sharing: A review.
European Journal of Operational Reserach, 223(2):295–303, 2012.

[3] Shuo Ma et al. Real-time city-scale taxi ridesharing. IEEE Transac-
tions on Knowledge and Data Engineering, 27(7):1782–1795, 2015.

[4] William J. Mitchell et al. Reinventing the Automobile: Personal Urban
Mobility for the 21st Century. The MIT Press, 2015.

[5] L. P. Kaelbling, Michael L. Littman, and Andrew W. Moore. Rein-
forcement learning: A survey. Journal of Artificial Intelligence Research,
4:237–285, 1996.

[6] Christopher J.C.H. Watkins. Learning from Delayed Rewards. PhD
thesis, University of Cambridge, England, 1989.

[7] Megan M. Olsen and Rachel Fraczkowski. Co-evolution in preda-
tor prey through reinforcement learning. Journal of Computational
Science, 9:118–124, 2015.

59

[8] Xueting Wang et al. A reinforcement learning-based predator-prey
model. Ecological Complexity, 42, 2020.

[9] New York City Taxi and Limousine Commission. Pas-
senger FAQ. https://www1.nyc.gov/site/tlc/passengers/
passenger-frequently-asked-questions.page. Accessed: 2020-03-
22.

[10] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning. Morgan and
Claypool, 2018.

[11] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

[12] Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8:279–292, 1992.

[13] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, third edition, 2010.

[14] David Poole and Alan Mackworth. Artificial Intelligence: Foundations
of Computational Agents. Cambridge University Press, second edition,
2017.

[15] Hussein Dia and Farid Javanshour. Autonomous shared mobility-
on-demand: Melbourne pilot simulation study. 19th EURO Working
Group on Transportation Meeting, EWGT2016, 2016.

[16] Joschka Bischoff and Michal Maciejewski. Simulation of city-wide
replacement of private cars with autonomous taxis in Berlin. Proce-
dia Computer Science, 83:237–244, 2016.

60

https://www1.nyc.gov/site/tlc/passengers/passenger-frequently-asked-questions.page
https://www1.nyc.gov/site/tlc/passengers/passenger-frequently-asked-questions.page

[17] Daniel J. Fagnant and Kara M. Kockelman. The travel and environ-
mental implications of shared autonomous vehicles, using agent-
based model scenarios. Transportation Research Part C, 40:1–13, 2014.

[18] Maxime Guériau and Ivana Dusparic. SAMoD: Shared autonomous
mobility-on-demand using decentralized reinforcement learning.
21st International Conference on Intelligent Transportation Systems
(ITSC), 2018.

[19] Michael W. Levin et al. A general framework for modeling shared
autonomous vehicles with dynamic network-loading and dynamic
ride-sharing application. Computers, Environment and Urban Systems,
64:373–383, 2017.

[20] Joschka Bischoff, Michal Maciejewski, and Kai Nagel. City-wide
shared taxis: A simulation study in Berlin. IEEE 20th International
Conference on Intelligent Transportation Systems, 2017.

[21] Wenwen Zhang et al. The performance and benefits of a shared
autonomous vehicles based dynamic ridesharing system: An agent-
based simulation approach. 95th Transportation Research Boarding
Meeting, 2015.

[22] Javier Alonso-Mora et al. On-demand high-capacity ride-sharing
via dynamic trip-vehicle assignment. PNAS, 114(3):462–467, 2017.

[23] Kevin Spieser et al. Shared-vehicle mobility-on-demand systems: A
fleet operator’s guild to rebalancing empty vehicles. Proc. TRB 95th
Annu. Meeting Compendium Papers, pages 1–15, 2015.

[24] Wen Shen et al. An online mechanism for ridesharing in au-
tonomous mobility-on-demand systems. Proceedings of the Twenty-

61

Fifth International Joint Conference on Artificial Intelligence (IJCAI-16),
pages 475–481, 2016.

[25] Daniel J. Fagnant and Kara M. Kockelman. Dynamic ride-sharing
and optimal fleet sizing for a system of shared autonomous vehicles.
Proceedings of the 94th Annual Meeting of the Transportation Research
Board in Washington DC, 2015.

[26] New York City Taxi and Limousine Commission. TLC
trip record data. https://www1.nyc.gov/site/tlc/about/
tlc-trip-record-data.page. Accessed: 2020-03-22.

[27] Ashley Nunes and Kristen D. Hernandez. Autonomous vehicles and
public health: High cost or high opportunity cost? Preprint, 2019.

[28] Patrick M. Bosch et al. Cost-based analysis of autonomous mobility
services. Transport Policy, 64:76–91, 2018.

[29] Todd Litman. Autonomous Vehicle Implementation Predictions: Implica-
tions for Transport Planning. Victoria Transport Policy Institute, 2020.

[30] Lawrence D. Burns and Bonnie A. Scarborough. Transforming Per-
sonal Mobility. The Earth Institute, Colmbia University, 2012.

[31] Glen Van Brummelen. Heavenly Mathematics: The Forgotten Art of
Spherical Trigonometry. Princeton University Press, 2013.

62

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Appendix A

Code

All the Python code used in this project has been submitted alongside
this document.

Alternatively, the code can be viewed at or downloaded from the follow-
ing public Git repository: https://github.com/dmulholl/taxisim.

63

Appendix B

Sample Q-Tables

Table B.1 below shows a sample q-table taken from a taxi after 2,000
days of training. The state is the taxi’s size; the actions are the choices
available to the taxi in that state, namely to subtract one from its size,
to remain at the same size, or to add one to its size. The table entry or
q-value is the percieved value to the taxi of taking that particular action
in that particular state, based on its previous experience.

Table B.2 shows an example of q-learning failing. This 14-seat taxi ’wants’
to be in state 7 but is trapped oscillating between states 13 and 14.

64

State Actions

−1 0 +1

1 -1.0000 3.9614 4.2514
2 4.1890 4.5095 4.3567
3 4.5053 4.2871 3.8813
4 3.8403 4.3982 5.1306
5 4.4104 3.8018 6.1835
6 5.5831 6.2612 7.1076
7 6.2320 7.8267 6.8260
8 7.0060 6.7034 6.4217
9 7.0003 5.9032 4.2079

10 4.9094 4.0061 3.8962
11 4.1492 3.9793 2.8740
12 3.4580 3.8673 3.2053
13 3.7678 2.9496 2.5014
14 2.9747 2.8777 2.3896
15 2.7989 2.7324 2.5311
16 2.8553 2.5458 -1.0000

Table B.1: Sample Q-Table from a 7-seat taxi after 2,000 days of training.

65

State Actions

−1 0 +1

1 -1.0000 1.5683 2.0120
2 1.7945 2.2223 2.1049
3 1.8395 2.5225 2.7699
4 2.7287 2.8513 3.3452
5 2.9234 3.1752 3.9989
6 3.4507 4.7165 5.1835
7 5.3119 5.4479 4.8346
8 5.2573 4.6518 4.3950
9 4.9286 4.8264 4.7628

10 4.5761 4.7334 4.4723
11 4.4399 4.2840 2.7962
12 3.2963 3.7476 3.5570
13 3.3172 4.1521 4.3933
14 4.3747 4.2370 4.2546
15 4.3254 4.2832 4.2681
16 4.3438 4.1678 -1.0000

Table B.2: Example of a q-learning agent becoming trapped at a local maximum. This
14-seat taxi ’wants’ to be in state 7 but is trapped oscillating between states
13 and 14.

66

Appendix C

Sample Monte Carlo State
Table

Table C.1 below shows a sample state table taken from a taxi after 1,000
days of Monte Carlo sample training. The state is the taxi’s size; the table
entries show the number of times the taxi has visited each state and the
taxi’s estimate of its expected return from being in that state.

A taxi’s preferred state is its state with the highest expected return. For
this particular taxi, its preferred state is 7.

67

State Visits Return

1 61 0.6444
2 61 0.6627
3 66 0.5981
4 69 0.5810
5 68 0.6360
6 67 0.7698
7 48 0.7821
8 47 0.7290
9 65 0.6565

10 69 0.6477
11 57 0.6390
12 58 0.5921
13 79 0.5805
14 58 0.4605
15 64 0.4755
16 63 0.4331

Table C.1: Sample state table after 1,000 days of training.

68

	List of Figures
	List of Tables
	Introduction
	Project Motivation
	Project Aims and Objectives
	Report Structure

	Background and Related Work
	Q-learning
	Background
	Algorithm
	Policy

	Related Work
	Definitions
	Literature Review
	Summary

	Design
	New York Taxi Data
	Applying Q-learning
	Reward Metric
	Training Protocol

	Implementation
	Building a Simulation Engine in Python
	Assumptions and Parameters
	Tick Time
	Dispatching
	Repositioning
	Ridesharing
	Groups and Splitting
	Execution Speed

	Calibrating the Model
	Implementing Q-learning

	Results & Evaluation
	Preliminary Investigation
	Setup
	Results
	Performance Metrics

	Confirmation
	Rethinking Q-learning
	Monte Carlo Reinforcement Learning

	Conclusion
	Bibliography
	Appendix Code
	Appendix Sample Q-Tables
	Appendix Sample Monte Carlo State Table

